
Multifluid Software Testing Plan

Applied Numerical Algorithms Group
NERSC Division

Lawrence Berkeley National Laboratory
Berkeley, CA

July 8, 2003

Contents

1 Scope 2

1.1 System Overview . 2

2 Reference Documents 3

3 Software Test Environment 4

4 Test Identification 5

4.1 General Information . 5
4.1.1 Test Level . 5
4.1.2 Test Classes . 5

4.2 Planned Tests . 6
4.2.1 Test 1 – Linear Operators . 6
4.2.2 Test 2 – Convergence of Multifluid Projection Operators 6
4.2.3 Test 3 – Fixed-boundary diffusion solver 6
4.2.4 Test 4 – Upwind advection . 6
4.2.5 Test 5 – Fixed-boundary projection test 7
4.2.6 Test 6 – Surface Tension Test 7
4.2.7 Test 7 – Multifluid system test 7
4.2.8 Test 8 – Multifluid AMR test 7
4.2.9 Test 9 – Multifluid system regression test 7

5 Test Schedules 8

6 Bug Tracking 9

7 Requirements Traceability 10

1

Chapter 1

Scope

The multifluid code will build heavily on the MFChombo [1] infrastructure, which in turn will
rely on the EBChombo [3] and Chombo [2] software. The software test plan outlined in this
document will focus on the functionality developed to implement the algorithm outlined in
the “Multifluid Algorithm Specification” [5] document; since MFChombo, EBChombo and
Chombo have their own software test plans, it is not necessary to provide for testing the
functionality of the libraries themselves. Note, however, that since the software developed
for the multifluid code will use the MFChombo functionality so extensively, changes and bugs
in the libraries will tend to have effects on the testing results. Multifluid code developers
are kept abreast of developments in the libraries through CVS notification (which sends
e-mail whenever a change is made in the CVS version-control repositories), and through
the ChomboUsers e-mail list.

1.1 System Overview

The multifluid software will implement an algorithm for computing fluid dynamics for
multiple inmiscible fluids with surface tension [5]. This software will be built using the
MFChombo software, which implements basic support for computations in a multifluid
environment using an embedded interface description of the multifluid interface. The
MFChombo software is built upon the Chombo and EBChombo software libraries.

2

Chapter 2

Reference Documents

We will refer to the multifluid algorithm described in [5] and the MFChombo software design
document [1]. Also, the test plan for the AMRINS code [4] is used as a starting point for
this test plan.

3

Chapter 3

Software Test Environment

The multifluid software, linked to the MFChombo and Chombo software libraries will be
tested. As new functionality is added and functionality is improved, testing will continue.
It is expected that a given time, the multifluid code will be in sync with the current state
of the MFChombo and Chombo libraries.

This software is primarily intended for use on UNIX/Linux-based systems. In general,
the makefiles used in both Chombo and AMRINS require GNU make (gmake). The
software itself is designed to be run from a shell, with an inputs file providing run-specific
inputs. For data output, the software uses hdf5, so the system must have hdf5-1.4.1
installed. The Chombo and AMRINS software is written in C++ and Fortran77, so working
C++ and F77 compilers must be available. We generally use the GNU compiler: both gcc
2.95 and 3.1 have been successfully used to compile this code. In addition, the Chombo
Fortran preprocessor uses PERL. If ChomboVis will be used to examine results, then it
must be installed as well. ChomboVis additionally requires Python and VTK.

We will test the multifluid code in a variety of environments, with a variety of compilers.
Table 3 lists the platforms and compilers we have successfully compiled and run other
Chombo codes:

Testing is done by ANAG personnel, although collaborators have been useful for finding
unintended functionality, primarily in the Chombo libraries themselves.

Platform OS C++ Compiler Fortran Compiler
CRAY T3E unicos KCC 3.3d Cray Fortran 3.5.0.4
IBM SP AIX KCC 4.0f, xlC 5.0.2.0 IBM XL Fortran 7.1.1.0

Pentium/AMD Linux gcc 2.95.3+, g77 2.95.3+, PGI Fortran 3.3-2
Intel C++ 6.0 Intel Fortran 5.0.1

Compaq OSF gcc 3.1 Compaq f77 X5.4A-1684-46B5P
Compaq Linux gcc 2.95.3 g77 2.95.3
SGI IRIX MIPS Pro CC 7.3.1.2m, gcc 2.95.3 MIPS Pro f90 7.3.1.2m

Table 3.1: Platforms and compilers on which the Chombo codes have been tested

4

Chapter 4

Test Identification

4.1 General Information

The testing for the multifluid libraries will mostly be a set of simple unit tests to verify
functionality.

For much of the functionality which will be developed for this work, the best way to
test whether components are functioning properly is often to do a convergence study. For
example, in the case of an operator such as a gradient or a Laplacian, a field is initialized
on a series of meshes, each a factor of 2 finer than the last. The operator is applied to the
field. If the operator is properly implemented, the result should converge at second-order
rates to an analytic solution.

4.1.1 Test Level

In general, most of the testing outlined in this document will be component testing.
System-level testing will also be carried out on the entire multifluid codes once they have
been fully developed. It is expected that integration testing is not necessary at this time,
because of the small size of the design team.

4.1.2 Test Classes

In general, testing will be structured to evaluate correctness of the code. It is antici-
pated that since the future phases of code development will be focused on performance
enhancement, performance of the code will then be monitored closely, so routine perfor-
mance testing should be unnecessary, while testing for correctness will be important as
changes are made to speed up the code.

5

4.2 Planned Tests

In this section, we outline the tests planned for the multifluid software, broken down by
functional algorithm component. Many of the tests will be based on the similar unit tests
developed for the AMRINS software [4], with extensions to test functionality unique to the
multifluid case. All testing codes will be written in C++.

4.2.1 Test 1 – Linear Operators

The multifluid divergence, gradient, and Laplacian operators developed for the multifluid
projections will be tested by doing convergence tests. The gradient and Laplacian oper-
ators will be tested by defining a field on a set of progressively finer grids, applying the
operator to the field, and then ensuring that the result converges to the analytic result
as expected. For the divergence operators, a similar procedure is followed, except with a
vector field instead of a single field variable.

4.2.2 Test 2 – Convergence of Multifluid Projection Operators

Both face-centered and cell-centered projection operators will be implemented for the
multifluid algorithm. Tests for each of these operators are similar.

Test 2a – Face-centered Projection Operator Convergence

A face-centered velocity field is initialized on a multifluid domain, the face-centered pro-
jection is applied, and convergence of the result is checked.

Test 2b – Cell-centered projection operator convergence

A cell-centered velocity field is initialized on a multifluid domain, the cell-centered projec-
tion is applied, and convergence of the result is checked.

4.2.3 Test 3 – Fixed-boundary diffusion solver

The heat equation with a simple moving interface (initially a plane, then one with cur-
vature) will be solved on a set of test grids using the fixed-boundary approximation to
ensure that the basic algorithm and implementation of the fixed-boundary approach is
correct and converges appropriately.

4.2.4 Test 4 – Upwind advection

A bubble will be advected in a simple flow field (first unidirectional flow without shear,
then unidirectional flow with shear, then a solid-body rotation) to ensure that the upwind

6

advection scheme has been implemented correctly and demonstrates the proper conver-
gence as the mesh is refined.

4.2.5 Test 5 – Fixed-boundary projection test

A bubble in an incompressible flow field will be advanced to ensure that the projection
method for a moving boundary is implemented correctly and demonstrates proper conver-
gence.

4.2.6 Test 6 – Surface Tension Test

In this test, a bubble is initialized to a non-circular (spherical) shape in a viscous fluid
with no velocity. Surface tension effects should cause the bubble to evolve into a spherical
shape. This will partially test the surface tension model used in this code.

4.2.7 Test 7 – Multifluid system test

A more complicated multifluid test problem will be identified and used to ensure that the
proper convergence for the multifluid system test is achieved.

4.2.8 Test 8 – Multifluid AMR test

To test the AMR algorithm, the test problem used in Test 5 will be used to ensure
that the AMR incompressible multifluid implementation achieves fine-grid accuracy and
convergence rates similar to the non-AMR (single-grid) example.

4.2.9 Test 9 – Multifluid system regression test

The benchmark multifluid test problem (most likely that used in Test 7) will be used as a re-
gression test. Diagnostic variables such as total mass, kinetic energy, and max(divergence)
will be reported at the end of the run. Changes in these diagnostic quantities will indicate
changes which will need to be investigated.

7

Chapter 5

Test Schedules

Once a capability in the code has been verified by the appropriate test, we plan to use
these tests as regression tests. We plan to apply the entire test suite once each month to
ensure that no unintended changes are introduced, and we also will re-run the test suite
after bugs are found and corrected to ensure that new bugs are not introduced.

The multifluid system regression test (Test 7) will be done weekly for serial runs, and
monthly for the suite of parallel runs, and also after bug fixes and library changes to lessen
the possibility of unintended changes in the code.

Also, acceptance tests will be run as stakeholders take possession of the software.

8

Chapter 6

Bug Tracking

The multifluid code developers (and the MFChombo and Chombo developers) use the ttpro
system for bug tracking. When a bug or unexpected behavior in the code is identified, a
description is entered in the ANAG ttpro database. As the bug is investigated and fixed,
the description is updated and expanded. Once a bug has been fixed, the bug report is
“closed” in ttpro, but it remains in the database for future reference if needed. Also, after
a bug fix, the regression test (Test # 7) is re-run to ensure that no unanticipated effects
have been added.

9

Chapter 7

Requirements Traceability

The requirements traceability matrix is presented in Figure 7.1. The first column, “Alg
Spec No”, connects the entry in matrix with the relevant section of the “Multifluid Algo-
rithm Specification” document [5]. A parenthetical number refers to a specific equation
in [5].

10

Alg Spec Req Statement S/W module Test Spec Test Case Verification Mod. Field
No. #
5.2-3 Linear operators Linear Operator multifluid 1 not

functions Test Plan verified
5.2 (46) Face-Centered MFProjector: multifluid 2a not

Projection MacProject test plan verified
5.3 (47) Cell-centered MFProjector: multifluid 2b not

Projection CCProject Test Plan verified
3.2-3.3 Diffusion solver MFDiffusion: multifluid 3 not

computeDiffusion Test Plan verified
6.1 upwind advection MFUpwindTrace multifluid 4 not

Test Plan verified
3.4 moving-interface MFProjection multifluid 5 not

projection CCproject Test Plan verified
surface multifluid 6 not
tension Test Plan verified
multifluid multifluid multifluid 7 not
system test code Test Plan verified
multifluid multifluid multifluid 7 not
system code Test Plan verified

regression test

T
ab
le
7.1:

R
eq
u
irem

en
ts

T
raceab

ility
M
atrix

11

Bibliography

[1] P. Colella, D. T. Graves, T. J. Ligocki, D. Martin, D. B. Serafini, and B. Van Straalen.
MFChombo Software Package for Cartesian Grid, Multifluid Applications. unpublished,
2003.

[2] P. Colella, D. T. Graves, T. J. Ligocki, D. F. Martin, D. Modiano, D. B. Serafini,
and B. Van Straalen. Chombo Software Package for AMR Applications - Design
Document. unpublished, 2000.

[3] P. Colella, D. T. Graves, T. J. Ligocki, D. Modiano, D. B. Serafini, and B. Van
Straalen. EBChombo Software Package for Cartesian Grid, Embedded Boundary Ap-
plications. unpublished, 2001.

[4] Applied Numerical Algorithms Group. Incompressible Navier-Stokes software testing
plan. available at http://davis.lbl.gov/NASA, 2002.

[5] Dan Martin and Phil Colella. Multifluid algorithm specification. available at
http://davis.lbl.gov/NASA, 2003.

12

